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ABSTRACT 

It has been pointed out that a construction for equivelar polyhedral manifolds 
described in an earlier paper by the present authors may possibly not be 
performed; an alternative construction is given here. Further, it is shown that 
certain equivelar polyhedra cannot have equiangular (and hence regular) faces. 

1. Introduction 

We recall from [4] that an equivelar polyhedron of type {p ,q}  or in the class 

J/p., is a closed polyhedral 2-manifold embedded in E 3, whose faces are all 

convex p-gons and whose vertices are all q-valent. In [4], we showed that certain 

of the classes Atp, q realized all but finitely many genera, while in [5], we proved 

that each of the classes ~/[3,q (q ~ 7), -/~4.q (q >----5) and A/o,4 (p => 5) contains 

infinitely many combinatorial types. 

However,  it has been pointed out by Goossens [2] that one of  the construc- 

tions we employed in [4], namely Method B, does not work, at least in the 

generality in which we stated it. This unfortunately invalidates Theorem 2 (d) 

(for the types {3,9;g} and {4,6;g}; g denotes the genus), and also eliminates the 

types {3,12;g} and {4,8;g} of (e) below. Now the last two are less important, 

since only the sparse sequence', of genera g = 66n + 73 (n => 0) was obtained; the 

results of [5] also give infinite (though different) sequences of genera for these 

types. 

For special sequences of genera of {4,6;g} there are variants of Method B 

which lead to equivelar manifolds with additional symmetry properties. For 

example in 16] there is a simple construction which leads to the sequence {4,6; g}, 

g = 3n, n => 2 with tetrahedral symmetry group. With a similar construction 
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{4,6;g}, g = 3n + 1, n-> 3 is obtained with the dihedral symmetry group. But 

these methods do not work for all genera, so in the first part of this note we shall 

give an alternative construction which will restore the missing parts of Theorem 

2 (d). Rather than dealing with 4-polytopes, we shall work instead with their 

Schlegel diagrams. 

The second part concerns the non-existence of equivelar manifolds of type 

{p,4} (p _-> 4) whose faces are equiangular; this therefore excludes the possibility 

of all the faces being regular. (This result is in a similar spirit to that of [1], 

although the latter is combinatorial in nature.) 

2. The classes ~3,9 and ~4,6 

For the reader's convenience, we repeat the statement of the appropriate parts 

of Theorem 2 of [4]. 

THEOREM 1. There exist equivelar polyhedra of type {3,9;g} and {4,6;g}, [or 
g =6,9,10 and g_->12. 

Only the class ~4.~ is really of interest here, since our new construction will 

amount combinatorially speaking to the same as that obtained by Method B, and 

so the same modification can be applied to {4,6;g} to obtain {3,9;g}. 
Let ~ be a Schlegel diagram in E 3 of a simplicial 4-polytope (or, rather, a 

3-diagram isomorphic to such a Schlegel diagram - -  see [3] for further details). 

Let F0 be the base of 9,  and let the remaining 3-cells be F1 . . . . .  F,, with F, , . . .  ,F4 

having common 2-cells with Fo. We denote the 2-cells of ~ by F,j = F~ C/Fj (and 

only use this notation if F, and Fj share a 2-cell). 

Suppose that there are points p~ E intF~ (i = 1 . . . . .  n), such that, for any pair 

F~,Fj of adjacent 3-cells, 

[Pi,Pi] t'l relint F , . j / 0 .  

{Here, [a, b] denotes the line segment joining a and b.) With some a satisfying 

O< a < 1, let Hi be the homothetic copy of ~ :  

moreover, write 

H~ = ( 1 -  A)pi + AF~ ( i = 1  . . . . .  n); 

Hij = (1 - A )p, + AF, j 

for its face corresponding to F~j, and 

K,j = c o n v ( H , j  U n,,). 
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If A is chosen sufficiently small, the prism Kq meets the triangle Fq only in its 

relative interior, and so the only intersections between the Kq's are of the kind 

K,i f~ Kik = H,~ fq Hik. 

This remains true for all i and j, if we define 

Koi = conv(F.j U Hio) (] = 1 . . . . .  4). 

Thus the quadrilateral faces of the Kq form a polyhedral manifold of type 

{4,6;n +2}; the calculation of the genus g = n + 2  is exactly as in [4]. 

It remains for us to show the existence of simplicial 3-diagrams ~ with 

n + 1 = 5,8,9 and n + 1 -> 11 _:;-cells, which admit a choice of appropriate  points 

p, . . . . .  p, as above;  let us call such a diagram suitable. There are two steps in the 

proof: we must find initial e~amples, and then apply an inductive procedure.  

We describe the inductive procedure first, because this motivates our search 

for initial examples. If @ is a suitable diagram, and p~ ~ int F~ one of the chosen 

points, then it is clear that any other point p'~ in a sufficiently small neighbour- 

hood of p~ may be chosen instead of p~. Now, if we take the stellar subdivision of 

at p~, we replace the 3-cell t~ by four 3-cells, FI . . . . .  F~, say. We can obviously 

choose p{Ere l in tF{  (j = 1 . . . . .  4), sufficiently near p~, which will satisfy our 

required conditions. So, we have obtained a new suitable diagram with three 

more 3-cells than 9.  Hence,  we need only find suitable diagrams @ with 

n + 1 = 5,9 and 13 3-cells. 

The first case n + 1 = 5  i,; trivial: it is just the stellar subdivision of a 

te trahedron at an interior point. 

For n + 1 = 9, we take a diagram isomorphic to a Schlegel diagram of the 

cyclic polytope C(6,4) (see [3]). If we choose it appropriately,  we shall see that 

we can derive the case n + 1 := 13 from it. The base F, of @ is the te trahedron 

with vertices a = (2,2,2), b = ( - 2 ,  - 2 , 2 ) ,  c = (2, - 2 ,  - 2 )  and d = ( - 2 , 2 ,  - 2 ) ,  

and the two remaining vertices are e = (0,0,1) and f = ( 0 , 0 , -  1). The 8 other 

3-cells have vertices 

17i : abce, Fs : acef, 

1:2 : abde, F6 : adef,  

F,  : acdf,  F7 : bcef, 

174: bcdf, Fs : bdef. 

The points pl . . . .  ,p , ,  given by 
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p,  = (~ ,  - , ~ , / 3 ) ,  

p :  = ( -  ~,o~, /3) ,  

p~ : ( ~ , ~ , - / 3 ) ,  

.p4 : ( - o ~ , - o ~ , - / 3 ) ,  

p~ = (c~,0,0) ,  

p~ = (0, ,~,0), 

p7 = (0, - a ,  0), 

p~ = ( -  a , 0 , 0 ) ,  

with oe =~ and /3 = ~, can be checked to yield a suitable diagram. Obviously 

there is some freedom in choosing the p~, (The symmetry of the figure makes this 

clear.) 

For the final case n + 1 = 13, we take the stellar subdivision of @ at the point 

g = (0,0,0) of the edge [e,f]. Each of the 3-cells ~ (] = 5 , . . . ,8 )  is replaced by 

two 3-cells F [  and F)-, and the corresponding point pj is split into two points 

p~ E relint F f ,  as, for example, 

F~ : aceg, 

F5 : acfg, 

+ ( 1) p~ = a,0,~ , 

p~  = ( , ~ , 0 , - ~ ) ,  

and so on. Again, it may easily be checked that this diagram is suitable. 

3. Equivelar polyhedra with equiangular faces 

In calling an equivelar polyhedron of type {p,q} equiangular, we mean that 

each of its 2-faces is an equiangular polygon. This implies, of course, that the 

angle of each polygonal face is ~r(1-  2/p). In this section, we shall prove 

THEOREM 2. There is no equiangular equivelar polyhedron of type {p,4} for 
p>=4. 

As a consequence (as we mentioned in the introduction), no such polyhedral 

manifold can have regular faces. 

To prove the theorem, let v be any vertex of such an equiangular equivelar 

polyhedron M. If S is a sufficiently small sphere with centre v, then S fq M is a 

spherical 4-gon P;  its 4 edges have the same length, and so P must be a rhombus. 

Supposing S to be the unit sphere (as we clearly may), it follows that the 

diagonals of P lie in perpendicular planes through v = 0, and so we can choose 

coordinates so that the vertices of P are 

a± = (0, _+ sina, cosa) ,  0 < a = < ~ r  

b. = ( -+ sin/3,0,cos/3), 0 < / 3  < 7r. 
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The spherical arc length 3' = 7r (1-  2/p) of P is thus given by 

cos 'y = (a+, b+) = cos ~ cos/3. 

We now have two cases. If p_->5, then c o s y  < 0 ,  and hence cos c~ > 0 ,  

cos/3 < 0. Then there is no plane H through v, such that all of a+, b+ lie in one  of 

the open half-spaces bounded by H. If p = 4, then cos y = 0, and (since we can 

suppose a _-</3), we have cos/3 = 0, and/3 = ½7r. Then b+ and v are collinear, and 

so again no hyperplane H exists as above.  We have now obtained our 

contradiction, since, if M were to exist, any vertex v of the 3-polytope c o n v M  

would be a vertex of M possessing such a hyperplane H. 

It is probable that one could similarly disprove the existence of any equiangu- 

lar equivelar manifold of type {p,q} with p=>4 and 1/p+l/q < ~ ,  but the 

argument would necessarily be less simple than the one we have employed.  
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